Toric Codes from Order Polytopes

نویسندگان

چکیده

We investigate a class of linear error correcting codes in relation with the order polytopes. In particular we consider polytopes tree posets and bipartite posets. calculate parameters associated toric variety codes.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Order Bound for Toric Codes

In this paper we investigate the minimum distance of generalized toric codes using an order bound like approach. We apply this technique to a family of codes that includes the Joyner code. For some codes in this family we are able to determine the exact minimum distance.

متن کامل

Gorenstein Fano Polytopes Arising from Order Polytopes and Chain Polytopes

Richard Stanley introduced the order polytope O(P ) and the chain polytope C(P ) arising from a finite partially ordered set P , and showed that the Ehrhart polynomial of O(P ) is equal to that of C(P ). In addition, the unimodular equivalence problem of O(P ) and C(P ) was studied by the first author and Nan Li. In the present paper, three integral convex polytopes Γ(O(P ),−O(Q)), Γ(O(P ),−C(Q...

متن کامل

Toric Varieties and Lattice Polytopes

We begin with a lattice N isomorphic to Z. The dual lattice M of N is given by Hom(N,Z); it is also isomorphic to Z. (The alphabet may appear to be going backwards; but this notation is standard in the literature.) We write the pairing of v ∈ N and w ∈M as 〈v, w〉. A cone in N is a subset of the real vector space NR = N ⊗R generated by nonnegative R-linear combinations of a set of vectors {v1, ....

متن کامل

Toric Ideals of Flow Polytopes

We show that toric ideals of flow polytopes are generated in degree 3. This was conjectured by Diaconis and Eriksson for the special case of the Birkhoff polytope. Our proof uses a hyperplane subdivision method developed by Haase and Paffenholz. It is known that reduced revlex Gröbner bases of the toric ideal of the Birkhoff polytope Bn have at most degree n. We show that this bound is sharp fo...

متن کامل

Quantum Stabilizer Codes from Toric Varieties

A.R. Calderbank [1], P.W. Shor [2] and A.M. Steane [3] produced quantum stabilizer codes from linear codes containing their dual codes. A. Ashikhmin, S. Litsyn and M.A. Tsfasman in [4] used the construction to obtain asymptotically good quantum codes fra codes on algebraic curves. In [5] the author developed methods to construct linear error correcting codes from toric varieties and derived the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete and Computational Geometry

سال: 2021

ISSN: ['1432-0444', '0179-5376']

DOI: https://doi.org/10.1007/s00454-021-00329-w